首页> 外文OA文献 >Linear Programming / Semidefinite programming hierarchy lower bounds for decoding random Low-density parity-check codes
【2h】

Linear Programming / Semidefinite programming hierarchy lower bounds for decoding random Low-density parity-check codes

机译:Linear programming / semidefinite编程层次结构用于解码随机低密度奇偶校验码的下限

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Random (dv, dc)-regular LDPC codes (where each variable is involved in d, parity checks and each parity check involves d, variables) are well-known to achieve the Shannon capacity of the binary symmetric channel (for sufficiently large dv, and dc,) under exponential time decoding. However, polynomial time algorithms are only known to correct a much smaller fraction of errors. One of the most powerful polynomial-time algorithms with a formal analysis is the LP decoding algorithm of Feldman et al. which is known to correct an [omega](1/dc) fraction of errors. In this work, we show that fairly powerful extensions of LP decoding, based on the Sherali-Adams and Lasserre hierarchies, fail to correct much more errors than the basic LP-decoder. In particular, we show that: -- For any values of d, and de, a linear number of rounds of the Sherali-Adams LP hierarchy cannot correct more than an O(1/dc) fraction of errors on a random (dv, dc)-regular LDPC code. -- For any value of d, and infinitely many values of de, a linear number of rounds of the Lasserre SDP hierarchy cannot correct more than an O(1/dc) fraction of errors on a random (dv, dc)-regular LDPC code. Our proofs use a new streching and collapsing technique that allows us to leverage recent progress in the study of the limitations of LP/SDP hierarchies for Maximum Constraint Satisfaction Problems (Max-CSPs). The problem then reduces to the construction of special balanced pairwise independent distributions for Sherali-Adams and special cosets of balanced pairwise independent subgroups for Lasserre. Our (algebraic) construction for the Lasserre hierarchy is based on designing sets of points in Fq (for q any power of 2 and d = 2,3) with special hyperplane-incidence properties constructions that may be of independent interest. An intriguing consequence of our work is that expansion seems to be both the strength and the weakness of random regular LDPC codes. Our techniques are more generally applicable to a large class of Boolean CSPs called Min-Ones. In particular, for k-Hypergraph Vertex Cover, we obtain an improved integrality gap of k - 1 - e that holds after a linear number of rounds of the Lasserre hierarchy, for any k = q + 1 with q an arbitrary prime power. The best previous gap for a linear number of rounds was equal to 2-E and due to Schoenebeck.
机译:众所周知,随机(dv,dc)常规LDPC码(其中每个变量涉及d,奇偶校验,每个奇偶校验涉及d,变量)可以实现二进制对称信道的香农容量(对于足够大的dv,和dc,)进行指数时间解码。但是,已知多项式时间算法只能校正很小一部分的误差。形式分析最强大的多项式时间算法之一是Feldman等人的LP解码算法。已知它可以校正误差的ω(1 / dc)分数。在这项工作中,我们证明了基于Sherali-Adams和Lasserre层次结构的LP解码相当强大的扩展无法纠正比基本LP解码器更多的错误。特别是,我们证明:-对于d和de的任何值,Sherali-Adams LP层次的线性轮数不能校正随机(dv, dc)-常规LDPC码。 -对于任何d值和无限多个de值,线性Lasserre SDP层次结构的轮数不能校正随机(dv,dc)常规LDPC上的错误的O(1 / dc)小部分码。我们的证明使用了一种新的拉伸和折叠技术,该技术使我们能够利用LP / SDP层次结构对最大约束满足问题(Max-CSP)的局限性的最新研究成果。然后,问题就简化为Sherali-Adams的特殊平衡成对独立分布和Lasserre平衡对成对独立子组的特殊陪集的构造。我们针对Lasserre层次结构的(代数)构造是基于在Fq中设计点集(对于q的2的任何幂和d = 2,3),以及可能具有独立利益的特殊超平面入射特性构造。我们工作的一个有趣结果是,扩展似乎既是随机规则LDPC码的强项,也是弱项。我们的技术通常适用于称为Min-Ones的一大类布尔CSP。特别是,对于k-超图顶点覆盖,我们获得了k-1-e的改进的积分间隙,该间隙在Lasserre层次结构的线性轮数之后成立,对于任何k = q + 1且q为任意素数的幂。由于肖邦贝克,线性轮数的最佳先前间隙等于2-E。

著录项

  • 作者

    Ghazi, Badih;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号